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EQUATIONS OF AN ELASTIC ANISOTROPIC LAYER

UDC 539.3Yu. M. Volchkov and L. A. Dergileva

Differential equations of an elastic orthotropic layer are constructed on the basis of expansion of the
solutions of the elasticity theory in terms of the Legendre polynomials. The order of the system of
differential equations is independent of the form of the boundary conditions on the layer surfaces,
which allows a correct formulation of conditions on contact surfaces.

Key words: orthotropic elastic layer, Legendre polynomials.

Introduction. In reducing the three-dimensional problem of the elasticity theory to a two-dimensional
problem (theory of shells), either hypotheses of a kinematic and force character [1] or expansions in a certain full
system of functions [2] are used. Equations of the theory of shells with the use of the Kirchhoff–Love hypotheses are
normally constructed for the case where the forces on the shell surfaces are specified. This complicates the solution
of contact problems on the basis of such equations and often leads to nonphysical effects. Differential equations of
an elastic layer, whose order is independent of the form of the boundary conditions on the layer surfaces, which
ensures well-posedness of the contact problems, are constructed in [3, 4] on the basis of expansions in terms of the
Legendre polynomials. The equations of the layer in the first approximation are reduced to a system of ordinary
differential equations with constant coefficients. Generic solutions of these equations for an isotropic elastic layer
of constant thickness are given in [4], and solutions of some contact problems are described in [4–6]. The problem
of bending of a three-layer orthotropic beam was solved in [7] on the basis of the elastic layer equations in the first
approximation. A comparison of solutions of contact problems on the basis of the elastic layer equations in the
first approximation and solutions obtained by the elasticity theory equations revealed good agreement of results
obtained by approximate equations and elasticity theory equations [5]. The approach to constructing approximate
equations proposed in [3] was used in [8] to construct equations of an elastic layer of variable thickness. The elastic
layer equations in the first approximation can be used for the numerical solution of two-dimensional problems of
the elasticity theory. A numerical algorithm for solving two-dimensional problems of the elasticity theory by the
method of layers was suggested in [9].

Differential equations of an anisotropic elastic layer in the first approximation are given in the present paper.
1. Equations of the Two-Dimensional Problem of the Elasticity Theory. We write the equations of

the two-dimensional problem of the elasticity theory in a rectangular domain Ω: {−l 6 x1 6 l, −h/2 6 x2 6 h/2}:
∂σij

∂xj
+ fi = 0, σij = aijmnεmn, εij =

1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
. (1.1)

Here h is the layer thickness, 2l is the layer length, σij and εij are the stresses and strains, respectively, ui are
the displacements, and fi and aijmn are specified piecewise-continuous functions x1 and x2; the coefficients aijmn

satisfy the conditions

aijmnεijεmn − cεijεij > 0, aijmn = ajimn = aijnm,

where c is a nonnegative constant; the subscripts i and j take the values 1 and 2; summation is performed over the
dummy subscripts. At the boundary of the domain Ω, we impose the boundary conditions of the form

c±i1ui + d±i1σi1 = ϕ±i1 for x1 = ±l; (1.2)
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c±i2ui + d±i2σi2 = ϕ±i2 for x2 = ±h/2, (1.3)

where c±i2(x1), d±i2(x1), ϕ±i2(x1), and ϕ±i1(x2) are specified piecewise-continuous functions; c±i1 and d±i1 are specified
constants that satisfy the conditions

|c±ij |+ |d±ij | 6= 0, c+
ijd

+
ij > 0, c−ijd

−
ij 6 0. (1.4)

Inequalities (1.4) ensure dissipation of the boundary conditions (1.2) and (1.3).
2. Expansion of Stresses and Displacements in Series in Terms of the Legendre Polynomials.

Basic Boundary Conditions. Let the stresses and displacements be expanded in series in terms of the Legendre
polynomials

σij =
∞∑

k=0

σk
ijPk(ζ), ui =

∞∑
k=0

uk
i Pk(ζ), (2.1)

where ζ = 2x2/h, Pk(ζ) are the Legendre polynomials, and

σk
ij =

1 + 2k

2

+1∫
−1

σijPk(ζ) dζ; uk
i =

1 + 2k

2

+1∫
−1

uiPk(ζ) dζ.

It follows from (2.1) that

σ0
11 = T11/h, σ1

11 = 6M11/h2, σ0
12 = T21/h, (2.2)

where

T11 =

h/2∫
−h/2

σ11 dx2, M11 =

h/2∫
−h/2

σ11x2 dx2, T21 =

h/2∫
−h/2

σ21 dx2 (2.3)

are the force, moment, and lateral shear force in the layer cross section x1 = const, respectively. In (2.1), the first
two terms of the series for u1 and the first term of the series for u2 correspond to the displacement of the layer as
a stiff whole. If the stresses and displacements are presented in the form of series (2.1), the boundary conditions
(1.2) can be written as conditions on the coefficients of these series uk

i (x1) and σk
ij(x1):

c±i1u
k
i + d±i1σ

k
i1 = (ϕ±i1)

k, k = 0, 1, 2, . . . . (2.4)

In (2.4), (ϕ±i1)
k are the coefficients of the Legendre series of the functions ϕ±i1.

If the layer thickness is small (h � l), then, by virtue of the Saint-Venant principle, conditions (2.4) can
be divided into two groups: 1) conditions affecting the solution for all |x1| 6 l; 2) conditions affecting the solution
only in the neighborhood of the cross sections x1 = ±l. The conditions affecting the solution for all |x1| 6 l can be
called the basic conditions. According to the Saint-Venant principle, such conditions contain quantities (2.2), i.e.,

c±11u
k
1 + d±11σ

k
11 = (ϕ±11)

k, k = 0, 1,

c±21u
0
2 + d±21σ

0
21 = (ϕ±21)

0 for x1 = ±l.
(2.5)

3. Equations of the One-Dimensional Problem of the First Approximation. In constructing
equations in the first approximation, we require that the solution of the one-dimensional problem is possible under
arbitrary conditions (2.5) [arbitrary values of (ϕ±11)

k (k = 0, 1) and (ϕ±21)
0 and arbitrary values of c±i1 and d±i1

admitted by inequalities (1.4)]. Since there are six conditions (2.5), the minimum order of the system of the
one-dimensional problem of the first approximation should be six, and the system should not contain any other
derivatives except for

duk
1

dx1
,

dσk
11

dx1
, k = 0, 1,

du0
2

dx1
,

dσ0
21

dx1
. (3.1)

Thus, in the series for the derivatives

∂σ11

∂x1
,

∂σ21

∂x1
,

∂u1

∂x1
,

∂u2

∂x1
, (3.2)
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entering into the equilibrium equations [the first group of Eqs. (1.1)], we leave only terms that contain deriva-
tives (3.1). Thus, derivatives (3.2) are replaced by the derivatives

∂σ′11
∂x1

,
∂σ′21
∂x1

,
∂u′1
∂x1

,
∂u′2
∂x1

,

where

σ′11 =
1∑

k=0

σk
11Pk(ζ), σ′21 = σ0

21, u′1 =
1∑

k=0

uk
1Pk(ζ), u′2 = u0

2. (3.3)

In the series for the derivatives ∂σ12/∂x2 and ∂σ22/∂x2 in Eqs. (1.1), we leave only those terms that provide the
correspondence

∂σ12

∂x2
∼ ∂σ′11

∂x1
,

∂σ22

∂x2
∼ ∂σ′21

∂x1
. (3.4)

In (3.4) and below, the tilde indicates an identical degree of the polynomials with respect to ζ. Therefore, in the
one-dimensional problem of the first approximation, σ12 and σ22 in the equilibrium equations from (1.1) are replaced
by polynomial segments

σ′12 =
2∑

k=0

σk
12Pk(ζ), σ′22 =

1∑
k=0

σk
22Pk(ζ). (3.5)

The mass forces f1 and f2 are replaced by the segments f ′1 and f ′2 of the Legendre polynomial series so that
the following correspondence holds:

f ′1 ∼
∂σ′11
∂x1

, f ′2 ∼
∂σ′21
∂x1

.

Thus, we have

f ′1 =
1∑

k=0

fk
1 Pk(ζ), f ′2 = f0

2 , fk
i =

1 + 2k

2

+1∫
−1

fiPk(ζ) dζ, k = 1, 2. (3.6)

In accordance with approximations (3.3), (3.5), and (3.6), the equilibrium equations from (1.1) are replaced by the
equations

∂σ′ij
∂xj

+ f ′i = 0. (3.7)

In (3.3), (3.5), the coefficients σk
ij are the sought functions of the variable x1.

Designating

σ′12(ζ = ±1) = σ±12, σ′22(ζ = ±1) = σ±22,

we obtain from (3.5)

σ2
12 = (σ+

12 + σ−12)/2− σ0
12, σ1

12 = (σ+
12 − σ−12)/2,

σ1
22 = (σ+

22 − σ−22)/2, σ0
22 = (σ+

22 − σ−22)/2.

Using these relations and (2.3), we can write Eqs. (3.7) as

dT11

dx1
+ σ+

12 − σ−12 + f0
1 h = 0,

dM11

dx1
+

σ+
12 + σ−12

2
h− σ0

12h +
1
6

h2f1
1 = 0,

dT21

dx1
+ σ+

22 − σ−22 + f0
2 h = 0.

(3.8)

If we assume that σ0
21 = σ0

12 and, hence, σ0
12 = Q, Eqs. (3.8) are equations of equilibrium of an element loaded by the

mass forces fi and surface forces σ±12 and σ±22; the size of the element is infinitesimal in the x1 direction and equals
h in the x2 direction. Thus, in the one-dimensional problem of the first approximation, the requirement that the
stresses should satisfy the equations of equilibrium of arbitrary infinitesimal elements is replaced by a less rigorous
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requirement that the stresses should satisfy the conditions of equilibrium of elements whose size is infinitesimal only
in the x1 direction and finite in the x2 direction.

In addition to approximations of displacements u′1 and u′2 [relations (3.3)], the following approximations are
used in the equations of the one-dimensional problem:

u′′1 =
3∑

k=0

uk
1Pk(ζ), u′′2 =

2∑
k=0

uk
2Pk(ζ). (3.9)

The length of polynomial segments in (3.9) is determined by the relations

∂u′′1
∂x2

∼ σ′12,
∂u′′2
∂x2

∼ σ′22.

Approximations (3.9) are used in substituting the derivatives ∂u1/∂x2 and ∂u2/∂x2 in the last group of Eqs. (1.1)
by the derivatives ∂u′′1/∂x2 and ∂u′′2/∂x2.

The strains in the one-dimensional problem of the first approximation are expressed via the segments u′i and
u′′i as follows:

ε11 =
∂u′1
∂x1

, 2ε12 =
∂u′′1
∂x2

+
∂u′2
∂x1

, ε22 =
∂u′′2
∂x2

. (3.10)

The stresses inside the layer are calculated by the formulas

σij = aijmnεmn, (3.11)

where εmn is determined by relations (3.10). Though the strains are polynomials in terms of the x2 coordinate, the
stresses can be other than polynomials if the elasticity coefficients depend on the coordinates x1 and x2, e.g., in the
case of an inhomogeneous material.

It follows from (3.3), (3.5), (3.10), and (3.11) that the coefficients σk
ij and uk

i are related as

σk
ij =

1 + 2k

2

+1∫
−1

aijmnεmnPk(ζ) dζ. (3.12)

The boundary conditions (1.3) in the one-dimensional problem are replaced by the conditions

c±i2u
′′
i + d±i2σ

′
i2 = ϕ±i2 (i = 1, 2) for x2 = ±h/2. (3.13)

Equations (3.3), (3.5), (3.7), and (3.9)–(3.13) and the boundary conditions (2.5) form a closed system of
one-dimensional equations of the first approximation for the elastic layer. Note, the equilibrium equations (3.8) can
be written as

+1∫
−1

[∂σ1i

∂xi
+ f1

]
Pk(ζ) dζ = 0,

+1∫
−1

[∂σ2i

∂xi
+ f2

]
dζ = 0 (k = 0, 1),

and Eqs. (3.11) can be written as
+1∫
−1

[σ′11 − a11ijεij ]Pk(ζ) dζ = 0,

+1∫
−1

[σ′22 − a22ijεij ]Pk(ζ) dζ = 0,

+1∫
−1

[σ′12 − a12ijεij ]Pk(ζ)dζ = 0, σ0
21 = σ0

12.

The solution of the one-dimensional problem reduces to the solution of a system of differential equations for
the functions

u0
1, u1

1, u0
2, σ0

11, σ1
11, σ0

21. (3.14)

This system has the fourth order regardless of the form of the boundary conditions on the layer surfaces x2 = ±h/2.
The functions (3.14) are called the basic functions, and the functions σ0

22, σ1
22, σ1

12, σ2
12, u2

1, u3
1, u1

2, and
u2

2 are called the additional functions.
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We can show that the solution of the one-dimensional problem satisfies the energy identity∫
Ω

σijεij dΩ =
∫
Ω

(
f ′iu

′
i +

∂(σ′i1u
′
i)

∂x1
+

∂(σ′i2u
′′
i )

∂x2

)
dΩ. (3.15)

Identity (3.15) allows us to prove the uniqueness of a certain class of contact problems for the elastic layer [4].
4. Transition to Dimensionless Variables in the Equations of the One-Dimensional Problem.

In what follows, we use the dimensionless quantities

σ̄ij =
σij

σ0
, ε̄ij =

εij

ε0
, ε0 =

σ0

µ
, ūi =

2ui

hε0
,

ξ =
x1

L0
, ζ =

2x2

h
, η =

h

2L0
, f̄0

i =
f0

i h

2σ0
.

(4.1)

The segments of the Legendre polynomial series (3.3), (3.5), and (3.9) for dimensionless stresses and dis-
placements are written in the form

σ̄′11 = t11 + m11P1, σ̄′12 = t12 + m12P1 + r12P2,

σ̄′21 = t21, σ̄′22 = t22 + m22P1;
(4.2)

ū′1 = u0 + u1P1, ū′2 = v0,

ū′′1 = u0 + u1P1 + u2P2 + u3P3, ū′′2 = v0 + v1P1 + v2P2.
(4.3)

In (4.2) and (4.3),

t11 =
T11

hσ0
, t21 = t12 =

T21

hσ0
, m11 =

6M11

h2σ0
,

u0 =
1

hε0

h/2∫
−h/2

u1

h
dx2, u1 =

6
h2ε0

h/2∫
−h/2

u1

h
x2 dx2, v0 =

1
hε0

h/2∫
−h/2

u2

h
dx2.

(4.4)

We write the relation between the dimensionless stresses and strains:

σ̄1 = α1(ε̄1 + γ1ε̄2), σ̄2 = α2(ε̄2 + γ2ε̄1), σ̄12 = 2m̄ε12. (4.5)

For a transversely isotropic material, the elastic constants in relations (4.5) have the form

α1 =
E2

σ0

n(1− nν2
2)

(1 + ν1)(1− ν1 − 2nν2
2)

, α2 = α1
1− ν2

1

n(1− nν2
2)

,

γ1 =
ν2(1 + ν1)
1− nν2

2

, γ2 =
nν2

1− ν1
, m̄ = m

E2

σ0

(4.6)

in the case of plane deformation or

α1 =
E2n

σ0(1− nν2)
, α2 =

α1

n
, γ1 = ν2, γ2 = nν2, m̄ = m

E2

σ0
(4.7)

for the plane-stressed state. The elastic constants E1 and ν1 in (4.5) characterize the material behavior in the
anisotropy plane, and the elastic constants E2, G2, and ν2 characterize its behavior in the direction orthogonal to
the isotropy plane, n = E1/E2, and m = G2/E2.

For an orthotropic material, the elastic constants in Eqs. (4.5) for a plane-stressed state are written as

α1 =
Ex

σ0(1− νxyνxy)
, α2 =

Ey

σ0(1− νxyνxy)
,

γ1 = νxy, γ2 = νyx, m̄ = m
Gxy

σ0
,

νxy

Ex
=

νyx

Ey
.
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For an isotropic material, Eqs. (4.6), (4.7) for E1 = E2, G1 = G2, and ν1 = ν2 yield the relations

α1 = α2 = α = 2/(1− γ), (4.8)

where γ = ν/(1− ν) in the case of plane deformation and γ = ν for the plane-stressed state.
The system of differential equations for the coefficients of expansions (4.2) and (4.3) in dimensionless variables

is written in the following form:

ηt′11 + (σ̄+
12 − σ̄−12)/2 + f̄0

1 = 0, ηt′12 + (σ̄+
2 − σ̄−2 )/2 + f̄0

2 = 0,

ηm′
11 − 3t12 + 3(σ̄+

12 + σ̄−12)/2 + f̄1
1 = 0,

t11 = α1(ηu′0 + γ1v1), t22 = α2(γ2ηu′0 + v1), (4.9)

m11 = α1(ηu′1 + 3γ1v2), m22 = α2(γ2ηu′1 + 3v2),

t12 = m(ηv′0 + u1 + u3), m12 = 3mu2, r12 = 5mu3.

System (4.9) of 10 equations with respect to 14 coefficients of expansions (4.2) and (4.3) is closed by four
conditions on the layer surfaces for ζ = ±1:

c±i2u
′′
i + d±i2σ

′
i2 = ϕ±i2. (4.10)

System (4.9), (4.10) of the elastic layer in the first approximation can be presented in the form of six
first-order differential equations with respect to the basic functions u0, u1, v0, t11, m11, and t12

t′11 = −[(σ+
12 − σ−12)/2 + f0

1 ]/η, u′0 = (α2t11 − α1γ1t22)/(ηα1α2(1− γ1γ2)),

m′
11 = [3t12 − 3(σ+

12 + σ−12)/2− f1
1 ]/η, u′1 = (α2m11 − α1γ1m22)/(ηα1α2(1− γ1γ2)), (4.11)

t′12 = −[(σ+
22 − σ−22)/2 + f0

2 ]/η, v′0 = (t11/m− u1 − u3)/η

and eight equations, which contain, in addition to the basic quantities, the additional quantities u2, u3, v1, v2, m12,
r12, t22, and m22, and specified functions entering into the right sides of conditions (3.13):

v1 = (α1t22 − γ2α2t11)/(α1α2(1− γ1γ2)), m12 = 3mu2,

v2 = (α1m22 − γ2α2m11)/(3α1α2(1− γ1γ2)), r12 = 5mu3,

c+
12(u0 + u1 + u2 + u3) + d+

12(t12 + m12 + r12) = ϕ+
12(ξ),

c−12(u0 − u1 + u2 − u3) + d−12(t12 −m12 + r12) = ϕ−12(ξ), (4.12)

c+
22(v0 + v1 + v2) + d+

22(t22 + m22) = ϕ+
22(ξ),

c−22(v0 − v1 + v2) + d−22(t22 −m22) = ϕ−22(ξ).

From Eqs. (4.12), the additional quantities can be expressed in terms of the basic and known functions
c±i2(ξ), d±i2(ξ), and ϕ±i2(ξ) (i = 1, 2). Substituting these expressions into Eqs. (4.11), we obtain a system of sixth-
order differential equations with respect to the basic quantities. The order of this system is independent of the form
of the boundary conditions on the layer surfaces.

If we introduce the vector z = [u0, u1, v0, t11,m11, t12]t, the system of equations of the layer can be written
as

z′ = Hz + F , (4.13)

where H is a 6× 6 quadratic matrix and F is a vector of six components.
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For system (4.13), for ξ = ξ0 and ξ = ξ1, we impose the boundary conditions of the form

Ax + By = C, (4.14)

where

x =

∥∥∥∥∥∥
u0

u1

v0

∥∥∥∥∥∥ , y =

∥∥∥∥∥∥
t11
m11

t12

∥∥∥∥∥∥ .

In (4.14), A and B are specified matrices of the order 3× 3; C is a specified vector with three components.
The matrix H of system (4.13) depends on the form of the boundary conditions on the layer surfaces.

A generic solution of this system can be written for an arbitrary form of the conditions. But if the structure
consists of several layers, the order of the system increases, and it becomes next to impossible to construct an
analytical solution. In this case, it is reasonable to use numerical algorithms.

5. Moment Finite Element. Below, we construct a stiffness matrix of a rectangular finite element
Ω : {x−1 6 x1 6 x+

1 , x−2 6 x2 6 x+
2 }. We assume that the forces t±ij (or the corresponding mean displacements of

the faces) are set on all four faces of the element, and the bending moments m±
11 (or the mean angles of rotation of

the faces θ±11) are also set on two opposite side faces. We introduce the variables

ξ1 = 2[x1 − (x+
1 + x−1 )/2]/h1, ξ2 = 2[x2 − (x+

2 + x−2 )/2]/h2,

where h1 = x+
1 − x−1 and h2 = x+

2 − x−2 . In this case, the rectangle Ω is transformed into a square.
The stresses and displacements inside the element Ω along the ξ2 coordinate are approximated by the

segments of the Legendre polynomial series (3.3), (3.5), and (3.9). We represent the functions σk
ij in the form of

segments of the Legendre polynomial series Qi(ξ1). If we require that each term in (3.3) is represented by identical
segments of the polynomial series in terms of Qi(ξ1) and Pk(ξ2), we have to assume that

σ′11 =
1∑

i=0

1∑
k=0

σ
(1,k)
11 QiPk, σ′21 =

1∑
i=0

σ
(i,0)
21 Qi, σ′22 =

1∑
i=0

1∑
k=0

σ
(1,k)
11 QiPk,

σ′21 =
1∑

i=0

σ
(i,0)
21 Qi, f ′1 =

1∑
k=0

f
(0,k)
1 Pk, f ′2 = f

(0,0)
2 ,

(5.1)

where

σ
(i,k)
α1 =

(1 + 2i)(1 + 2k)
4

1∫
−1

1∫
−1

σα1QiPk dξ1 dξ2, f (0,k)
α =

1 + 2k

4

1∫
−1

1∫
−1

fαPk dξ1 dξ2, α = 1, 2.

Representing the coefficients of the segments of the series for displacements in (3.3) and (3.15) by segments
of the Legendre polynomial series Qi(ξ1), we require that the problem of determining the expansion coefficients in
the rectangle Ω has a solution for all boundary conditions for x1 = ±l of the form

c±11u
k
1 + d±11σ

k
11 = (ϕ±11)

k, c±21u
0
2 + d±21σ

0
21 = (ϕ±21)

0 (k = 0, 1) (5.2)

and the following relation is valid:

∂u′′1
∂x2

∼ σ′12,
∂u′′2
∂x2

∼ σ′22.

Here, the tilde denotes an identical power of the polynomials along ξ1 and ξ2. In accordance with these requirements,
we have to set

u′1 =
2∑

i=0

1∑
k=0

u
(i,k)
1 QiPk, u′′1 =

3∑
k=0

u
(0,k)
1 Pk,

u′2 =
2∑

i=0

u
(i,0)
2 Qi, u′′2 =

2∑
k=0

u
(0,k)
2 Pk.

(5.3)
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The strains inside the element are expressed in terms of displacements (5.3) by the formulas

ε11 =
∂u′1
∂x1

, 2ε12 =
∂u′′1
∂x2

+
∂u′2
∂x1

, ε22 =
∂u′′2
∂x2

. (5.4)

The stresses inside the layer are calculated by the formulas

σij = aijmnεmn, (5.5)

where εmn are determined by relations (5.4).
Equations (3.7), (5.4), and (5.5) and the boundary conditions

u′1(x
±
1 ) = u±11 ± h2θ

±
11P1/2, u′2(x

±
1 ) = u±21, u′i(x

±
2 ) = u±i2 (i = 1, 2)

form a closed system of algebraic equations with respect to the coefficients u
(i,k)
α and σ

(i,k)
m entering into expan-

sions (5.1) and (5.3). The generalized forces and displacements are determined by relations (4.4). Solving this
system, we find the expressions for the forces t±ij and moments m±

11 via the displacements u±ij and angles of rotation
θ±11 of the element faces. The forces t±ij and moments m±

11 are related to the solution of the system by the equalities

t±i1 = h2(σ
(0,0)
i1 ± σ

(1,0)
i1 ), t±i2 = h1σ

′
i2(±1) (i = 1, 2),

m±
11 = h2

2(σ
(0,1)
11 ± σ

(1,1)
11 )/6.

We introduce the notation

u0
ij = (u+

ij + u−ij)/2, u1
ij = u+

ij − u−ij , θ0
11 = (θ+

11 + θ−11)/2, θ1
11 = θ+

11 − θ−ij . (5.6)

Note, the linear combinations of quantities (5.6)

u1
11, u1

22, u1
12/h2 + u1

21/h1, θ1
11, u1

12/h2 − θ0
11, u0

12 − u0
11, u0

21 − u0
22 (5.7)

are equal to zero if the element is displaced as a stiff whole.
To find the coefficients of the element stiffness matrix, we have to perform the following calculations. Using

(5.3) and (5.6), we express u
(i,k)
α via u

(0,0)
11 , u

(0,0)
22 , u

(0,1)
11 , and quantities (5.6). From Eqs. (3.7), (5.4), and (5.5),

we express the quantities u
(0,0)
11 , u

(0,0)
22 , and u

(0,1)
11 and strains via quantities (5.7). If relations (5.5) in the case of a

two-dimensional problem are written in the form

σ11 = aε11 + bε22, σ22 = bε11 + aε22, σ12 = 2µε12,

we obtain after the calculations

t011 = a
h2

h1
u1

11 + bu1
22, t022 = h1

( a

h2
u1

22 +
b

h1
u1

11

)
, t021 = µh2

( 1
h1

u1
21 +

1
h2

u1
12

)
,

t012 = µh1

{ 1
h1

u1
21 +

1
h2

u1
12 +

5
ah2/h1 + 5µh1/h2

[
a

h2

h1

( 1
h2

u1
12 − θ0

11

)
− 1

6
h1f

(0,1)
1

]}
,

t111 =
12a

µh1/h2 + ah2/h1

[
µ(u0

11 − u0
12)−

1
12

h2
2f

(0,0)
1

]
, (5.8)

t112 =
12µ

µh1/h2 + ah2/h1

[
a(u0

12 − u0
11)−

1
12

h2
1f

(0,0)
1

]
,

t121 =
µ

µh2/h1 + ah1/h2

[
12a(u0

21 − u0
22)−

bh2
2

h1
θ1
11 − h2

2f
(0,0)
2

]
,

t122 =
µ

µh2/h1 + ah1/h2

[
12a(u0

22 − u0
21) +

bh2
2

h1
θ1
11 −

ah2
1

µ
f

(0,0)
2

]
,

m1
11 =

ah2
2

ah2/h1 + 5µh1/h2

[
5µθ0

11 −
1
6

h2f
(0,1)
1

]
,

m0
11 =

h2
2

6(µh2/h1 + ah1/h2)

{6bµ

h1
(u0

22 − u0
21) +

1
2

[
aµ

h2
2

h1
+ a2 − b2

]
θ1
11 −

1
2

bh1f
(0,0)
2

}
.
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Expressions (5.8) can be represented as

t0ij = 〈t0ij〉+ c0
ij , t1ij = 〈t1ij〉+ c1

ij , m0
11 = 〈m0

11〉+ d0
11, m1

11 = 〈m1
22〉+ d1

11, (5.9)

where 〈t0ij〉, 〈t1ij〉, 〈m0
11〉, and 〈m1

11〉 are linear combinations of quantities (5.7). Hence, 〈t0ij〉, 〈t1ij〉, 〈m0
11〉, and 〈m1

11〉
vanish if the element is displaced as a stiff whole, and the quantities c0

ij , c1
ij , d0

11, and m1
11 are linear combinations

of f ′1 and f ′2.
Relations (5.9) determine the stiffness matrix of the moment rectangular element.
Since∫
Ω

aijmnεijεmn dΩ =
∫
Ω

[
f ′iu

′
i +

∂

∂x1
(σ′i1u

′
i) +

∂

∂x2
(σ′i2u

′′
i )

]
dΩ = t+iju

+
ij − t−iju

−
ij = 〈t1ij〉u0

ij + 〈t0ij〉u1
ij , (5.10)

then 〈t1ij〉u0
ij + 〈t0ij〉u1

ij > 0. The equality in (5.10) is only possible if the element is displaced as a stiff whole. This
ensures the uniqueness of the solution for all boundary conditions of the form (5.2).

The procedure of calculating the global stiffness matrix for a domain constructed of rectangles and the
iteration algorithm for determining the stress-strain state for such regions can be found in [8].

In the above-described approach to constructing the elastic layer equations, the representations of stresses
and displacements in the form of segments of the Legendre polynomials were actually used to approximate the
derivatives of stresses and displacements entering into the equations. The stresses inside the layer are calculated by
formulas (3.14). This allows one to generalize the approach described above to the case of constructing equations
of the layer whose behavior is described by physically nonlinear governing relations.

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00649).
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